Search results

1 – 7 of 7
Article
Publication date: 5 August 2022

N. Keerthi Reddy and M. Sankar

This study aims to numerically study the buoyant convective flow of two different nanofluids in a porous annular domain. A uniformly heated inner cylinder, cooled outer…

Abstract

Purpose

This study aims to numerically study the buoyant convective flow of two different nanofluids in a porous annular domain. A uniformly heated inner cylinder, cooled outer cylindrical boundary and adiabatic horizontal surfaces are considered because of many industrial applications of this geometry. The analysis also addresses the comparative study of different porous media models governing fluid flow and heat transport.

Design/methodology/approach

The finite difference method has been used in the current simulation work to obtain the numerical solution of coupled partial differential equations. In particular, the alternating direction implicit method is used for solving transient equations, and the successive line over relaxation iterative method is used to solve time-independent equation by choosing an optimum value for relaxation parameter. Simpson’s rule is adopted to estimate average Nusselt number involving numerical integration. Various grid sensitivity checks have been performed to assess the sufficiency of grid size to obtain accurate results. In this analysis, a general porous media model has been considered, and a comparative study between three different models has been investigated.

Findings

Numerical simulations are performed for different combinations of the control parameters and interesting results are obtained. It has been found that the an increase in Darcy and Rayleigh numbers enhances the thermal transport rate and strengthens the nanofluid movement in porous annulus. Also, higher flow circulation rate and thermal transport has been detected for Darcy model as compared to non-Darcy models. Thermal mixing could be enhanced by considering a non-Darcy model.

Research limitations/implications

The present results could be effectively used in many practical applications under the limiting conditions of two-dimensionality and axi-symmetry conditions. The only drawback of the current study is it does not include the three-dimensional effects.

Practical implications

The results could be used as a first-hand information for the design of any thermal systems. This will help the design engineer to have fewer trial-and-run cases for the new design.

Originality/value

A pioneering numerical investigation on the buoyant convective flow of two different nanofluids in an annular porous domain has been carried out by using a general Darcy–Brinkman–Forchheimer model to govern fluid flow in porous matrix. The results obtained from current investigation are novel and original, with numerous practical applications of nanofluid saturated porous annular enclosure in the modern industry.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 October 2023

N. Keerthi Reddy, Aejung Yoon, Sankar Mani and H.A. Kumara Swamy

Natural convection in finite enclosures is a common phenomenon in various thermal applications. To provide the thermal design guidelines, this study aims to numerically explore…

Abstract

Purpose

Natural convection in finite enclosures is a common phenomenon in various thermal applications. To provide the thermal design guidelines, this study aims to numerically explore the potential of using internal baffles and nanofluids to either enhance or suppress heat transport in a vertical annulus. Furthermore, the annular-shaped enclosure is filled with aqueous-silver nanofluid and the effects of five distinct nanoparticle shapes are examined. In addition, the influence of baffle design parameters, including baffle position, thickness and length, is thoroughly analyzed.

Design/methodology/approach

The finite difference method is used in conjunction with the alternating direction implicit and successive line over relaxation techniques to solve nonlinear and coupled partial differential equations. The single phase model is used for nanofluid which is considered as a homogeneous fluid with improved thermal properties. The independence tests are carried out for assessing the sufficiency of grid size and time step for obtaining results accurately.

Findings

The baffle dimension parameters and nanoparticle shape exhibit significant impact on the convective flow and heat transfer characteristics, leading to the following results: sphere- and blade-shaped nanoparticles demonstrate around 30% enhancement in the heat transport capability compared with platelet-shaped nanoparticles, which exhibit the least. When considering the baffle design parameter, either a decrease in the baffle length and thickness or an increase in baffle height leads to an improvement in heat transport rate. Consequently, a threefold increase in baffle height yields a 40% improvement in thermal performance.

Originality/value

Understanding the impact of nanoparticle shapes and baffle design parameters on flow and thermal behavior will enable engineers to provide valuable insight on thermal management and overall system efficiency. Therefore, the current work focuses on exploring buoyant nanofluid flow and thermal mechanism in a baffled annular-shaped enclosure. Specifically, an internal baffle that exhibits conductive heat transfer through it is considered, and the impact of baffle dimensions (thickness, length and position) on the fluid flow behavior and thermal characteristics is investigated. In addition, the current study also addresses the influence of five distinct nanoparticle shapes (e.g. spherical, cylindrical, platelet, blade and brick) on the flow and thermal behavior in the baffled annular geometry. In addition to deepening the understanding of nanofluid behavior in a baffled vertical annulus, the current study contributes to the ongoing advancements in thermal applications by providing certain guidelines to design application-specific enclosures.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 2 November 2023

H.A. Kumara Swamy, Sankar Mani, N. Keerthi Reddy and Younghae Do

One of the major challenges in the design of thermal equipment is to minimize the entropy production and enhance the thermal dissipation rate for improving energy efficiency of…

Abstract

Purpose

One of the major challenges in the design of thermal equipment is to minimize the entropy production and enhance the thermal dissipation rate for improving energy efficiency of the devices. In several industrial applications, the structure of thermal device is cylindrical shape. In this regard, this paper aims to explore the impact of isothermal cylindrical solid block on nanofluid (Ag – H2O) convective flow and entropy generation in a cylindrical annular chamber subjected to different thermal conditions. Furthermore, the present study also addresses the structural impact of cylindrical solid block placed at the center of annular domain.

Design/methodology/approach

The alternating direction implicit and successive over relaxation techniques are used in the current investigation to solve the coupled partial differential equations. Furthermore, estimation of average Nusselt number and total entropy generation involves integration and is achieved by Simpson and Trapezoidal’s rules, respectively. Mesh independence checks have been carried out to ensure the accuracy of numerical results.

Findings

Computations have been performed to analyze the simultaneous multiple influences, such as different thermal conditions, size and aspect ratio of the hot obstacle, Rayleigh number and nanoparticle shape on buoyancy-driven nanoliquid movement, heat dissipation, irreversibility distribution, cup-mixing temperature and performance evaluation criteria in an annular chamber. The computational results reveal that the nanoparticle shape and obstacle size produce conducive situation for increasing system’s thermal efficiency. Furthermore, utilization of nonspherical shaped nanoparticles enhances the heat transfer rate with minimum entropy generation in the enclosure. Also, greater performance evaluation criteria has been noticed for larger obstacle for both uniform and nonuniform heating.

Research limitations/implications

The current numerical investigation can be extended to further explore the thermal performance with different positions of solid obstacle, inclination angles, by applying Lorentz force, internal heat generation and so on numerically or experimentally.

Originality/value

A pioneering numerical investigation on the structural influence of hot solid block on the convective nanofluid flow, energy transport and entropy production in an annular space has been analyzed. The results in the present study are novel, related to various modern industrial applications. These results could be used as a firsthand information for the design engineers to obtain highly efficient thermal systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 November 2023

A.K. Abdul Hakeem, Priya S., Ganga Bhose and Sivasankaran Sivanandam

The purpose of this study is to provide that porous media and viscous dissipation are crucial considerations when working with hybrid nanofluids in various applications.Recent…

Abstract

Purpose

The purpose of this study is to provide that porous media and viscous dissipation are crucial considerations when working with hybrid nanofluids in various applications.Recent years have witnessed significant progress in optimizing these fluids for enhanced heat transfer within porous (Darcy–Forchheimer) structures, offering promising solutions for various industries seeking improved thermalmanagement and energy efficiency.

Design/methodology/approach

The first step is to transform the original partial differential equations into a system of first-order ordinary differential equations (ODEs). The fourth-order Runge–Kutta method is chosen for its accuracy in solving ODEs. The present study investigates the free convective boundary layer flow of hybrid nanofluids over a moving thin inclined needle with the slip flow brought about by inclined Lorentz force and Darcy–Forchheimer porous matrix, viscous dissipation.

Findings

It is found that slip conditions (velocity and Thermal) exist for a range of the natural convection boundary layer flow. In the hybrid nanofluid flow, which consists of Al2O3 and Fe3O4 are nanoparticles, H2OC2H6O2 (50:50) are considered as the base fluid. The consequence of the governing parameter on the momentum and temperature profile distribution is graphically depicted. The range of the variables is 1 ≤ M ≤ 4, 1 ≤ d ≤ 2.5, 1 ≤ δ ≤ 4, 1 ≤ Fr ≤ 7, 1 ≤ Kr ≤ 7 and 0.5≤λ ≤ 3.5. The Nusselt number and skin friction factors are used to calculate the numerical values of various parameters, which are displayed in Table 4. These analyses elucidate that upsurges in the value of the Fr noticeably diminish the momentum and temperature. It is investigated to see if the contemporary results are in outstanding promise with the outcomes reported in earlier works.

Practical implications

The results can be very helpful to improve the energy efficiency of thermal systems.

Social implications

The hybrid nanofluids in heat transfer have the potential to improve the energy efficiency and performance of a wide range of systems.

Originality/value

This study proposes that in the combined effects of hybrid nanofluid properties, the inclined Lorentz force, the Darcy–Forchheimer model for porous media and viscous dissipation on the boundary layer flow of a conducting fluid over a moving thin inclined needle. Assessing the potential practical applications of the hybrid nanofluids in inclined needles, this could involve areas such as biomedical engineering, drug delivery systems or microfluidic devices. In future should explore the benefits and limitations of using hybrid nanofluids in these applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 October 2023

MD. Shamshuddin, Anwar Saeed, S.R. Mishra, Ramesh Katta and Mohamed R. Eid

Whilst a modest number of investigations have been undertaken concerning nanofluids (NFs), the exploration of fluid flow under exponentially stretching velocities using NFs…

Abstract

Purpose

Whilst a modest number of investigations have been undertaken concerning nanofluids (NFs), the exploration of fluid flow under exponentially stretching velocities using NFs remains comparatively uncharted territory. This work presents a distinctive contribution through the comprehensive examination of heat and mass transfer phenomena in the NF ND–Cu/H2O under the influence of an exponentially stretching velocity. Moreover, the investigation delves into the intriguing interplay of gyrotactic microorganisms and convective boundary conditions within the system.

Design/methodology/approach

Similarity transformations have been used on PDEs to convert them into dimensionless ODEs. The solution is derived by using the homotopy analysis method (HAM). The pictorial notations have been prepared for sundry flow parameters. Furthermore, some engineering quantities are calculated in terms of the density of motile microbes, Nusselt and Sherwood numbers and skin friction, which are presented in tabular form.

Findings

The mixed convection effect associated with the combined effect of the buoyancy ratio, bioconvection Rayleigh constant and the resistivity due to the magnetization property gives rise to attenuating the velocity distribution significantly in the case of hybrid nanoliquid. The parameters involved in the profile of motile microorganisms attenuate the profile significantly.

Practical implications

The current simulations have uncovered fascinating discoveries about how metallic NFs behave near a stretched surface. These insights give us valuable information about the characteristics of the boundary layer close to the surface under exponential stretching.

Originality/value

The novelty of the current investigation is the analysis of NF ND–Cu/H2O along with an exponentially stretching velocity in a system with gyrotactic microorganisms. The investigation of fluid flow at an exponentially stretching velocity using NFs is still relatively unexplored.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 September 2021

Souad Marzougui, Fateh Mebarek-Oudina, Mourad Magherbi and Ali Mchirgui

The purpose of this paper is to investigate the effects of Ha and the Nanoparticles (NP) volume fraction over the irreversibility and heat transport in Darcy–Forchheimer nanofluid…

Abstract

Purpose

The purpose of this paper is to investigate the effects of Ha and the Nanoparticles (NP) volume fraction over the irreversibility and heat transport in Darcy–Forchheimer nanofluid saturated lid-driven porous medium.

Design/methodology/approach

The present paper highlights entropy generation because of mixed convection for a lid-driven porous enclosure filled through a nanoliquid and submitted to a uniform magnetic field. The analysis is achieved using Darcy–Brinkman–Forchheimer technique. The set of partial differential equations governing the considered system was numerically solved using the finite element method.

Findings

The main observations are as follows. The results indicate that the movement of horizontal wall is an important factor for the entropy generation inside the porous cavity filled through Cu–water nanoliquid. The variation of the thermal entropy generation is linear through NPs volume fraction. The total entropy generation reduces when the Darcy, Hartmann and the nanoparticle volume fraction increase. The porous media and magnetic field effects reduce the total entropy generation.

Practical implications

Interest in studying thermal interactions by convective flow within a saturating porous medium has many fundamental considerations and has received extensive consideration in the literature because of its usefulness in a large variety of engineering applications, such as the energy storage and solar collectors, crystal growth, food processing, nuclear reactors and cooling of electronic devices, etc.

Originality/value

By examining the literature, the authors found that little attention has been paid to entropy generation encountered during convection of nanofluids. Hence, this work aims to numerically study entropy generation and heat transport in a lid-driven porous enclosure filled with a nanoliquid.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 August 2022

Yanfu Wang, Xin Wang and Lifei Liu

Lapping is a vital flattening process to improve the quality of processed semiconductor wafers such as single-crystal sapphire wafers. This study aims to optimise the lapping…

98

Abstract

Purpose

Lapping is a vital flattening process to improve the quality of processed semiconductor wafers such as single-crystal sapphire wafers. This study aims to optimise the lapping process of the fixed-abrasive lapping plate of sapphire wafers with good overall performance [i.e. high material removal rate (MRR), small surface roughness (Ra) of the wafers after lapping and small lapping plate wear ratio (η)].

Design/methodology/approach

The influence of process parameters such as lapping time, abrasive size, abrasive concentration, lapping pressure and lapping speed on MRR, Ra and η of lapping-processed sapphire wafers was studied, and the results were combined with experimental data to establish a regression model. The multi-evaluation index optimisation problem was transformed into a single-index optimisation problem via an entropy method and the grey relational analysis (GRA) to comprehensively evaluate the performance of each parameter.

Findings

The results revealed that lapping time, abrasive size, abrasive concentration, lapping pressure and lapping speed had different influence degrees on MRR, Ra and η. Among these parameters, lapping time, lapping speed and abrasive size had the most significant effects on MRR, Ra and η, and the established regression equations predicted the response values of MRR, Ra and η to be 99.56%, 99.51% and 93.88% and the relative errors between the predicted and actual measured values were <12%, respectively. With increased lapping time, MRR, Ra and η gradually decreased. With increased abrasive size, MRR increased nearly linearly, whereas Ra and η initially decreased but subsequently increased. With an increase in abrasive concentration, MRR, Ra and η initially increased but subsequently decreased. With increased lapping pressure, MRR and η increased nearly linearly and continuously, whereas Ra decreased nearly linearly and continuously. With increased lapping speed, Ra initially decreased sharply but subsequently increased gradually, whereas η initially increased sharply but subsequently decreased gradually; however, the change in MRR was not significant. Comparing the optimised results obtained via the analysis of influence law, the parameters optimised via the entropy method and GRA were used to obtain sapphire wafers lapping with an MRR of 4.26 µm/min, Ra of 0.141 µm and η of 25.08, and the lapping effect was significantly improved.

Originality/value

Therefore, GRA can provide new ideas for ultra-precision processing and process optimisation of semiconductor materials such as sapphire wafers.

Details

Microelectronics International, vol. 39 no. 4
Type: Research Article
ISSN: 1356-5362

Keywords

1 – 7 of 7